

Review Paper

The Organ-on-a-Chip Revolution: Re-engineering Preclinical Science for the Next Generation of Medicine

Bhavani Bachu*, Vanaparthi Venkatesh, Lakshmi Manisha Rajaputana, Sudhakar Muvvala

Department of Pharmacology, Malla reddy College of Pharmacy, Dhullapally, Secunderabad, Telangana, India-500100

ARTICLE INFO

ARTICLE HISTORY

Received 18th Sep. 2025

Received in revised form 8
28th Sep. 2025

Accepted 01 Nov. 2025

Available online- 02 Nov.
2025

Key words:

Organ-on-a-Chip, Micro
physiological Systems (MPS),
Drug Discovery, In Vitro
Models, Personalized
Medicine, Animal Model
Alternatives, Preclinical
Models.

ABSTRACT

Organ-on-a-chip (OoC) systems represent a paradigm shift in biomedical research, developed to address the profound limitations of conventional preclinical models. For decades, the drug development process has been hampered by exorbitant costs and high clinical failure rates, largely due to the poor predictive accuracy of 2D cell cultures and animal models. This review critically assesses the role of OoC technology in creating a new preclinical standard. It examines the core principles of micro physiological systems, from design and fabrication to their application in disease modeling, efficacy screening, and predictive toxicology. The analysis contrasts the capabilities of OoCs with traditional methods, highlighting their superior physiological relevance and potential to de-risk clinical development. While synthesizing current successes, this review also identifies persistent challenges—notably in scalability, standardization, and regulatory adoption—and outlines future directions to realize the full promise of OoC platforms. By advocating for robust validation and strategic implementation, this report aims to frame the impactful integration of organ-on-a-chip technology into the future of medicine.

Corresponding author :

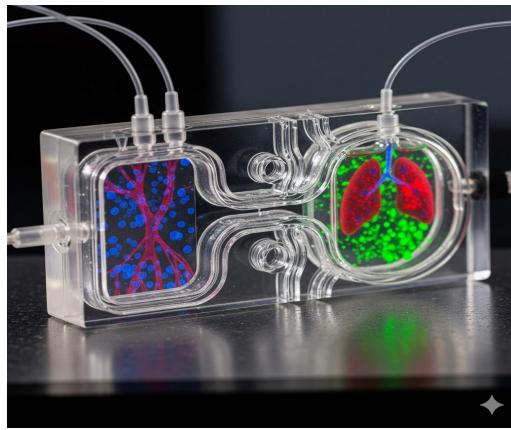
Bachu Bhavani,
Assistant Professor,
Department of Pharmacology, Malla Reddy College of Pharmacy, Maisammaguda, Secunderabad,
Telangana
Email ID: bhavani2708@gmail.com

1. INTRODUCTION

The Imperative for Innovation in Preclinical Research

The creation of new medicines is a cornerstone of modern science, yet the underlying process is critically flawed by a crisis of translation. The traditional preclinical pipeline, which serves as the foundation for all drug development, suffers from systemic inefficiencies that result in catastrophic failure rates. It is estimated that over 90% of drug candidates that show promise in preclinical studies ultimately fail when tested in humans¹. This inefficiency is not merely a financial problem; it is a significant barrier to innovation that delays the delivery of potentially life-saving therapies. This reality has created an urgent need for a new paradigm. Organ-on-a-Chip technology has risen as a leading catalyst for

this change, offering a powerful toolkit to fundamentally re-engineer preclinical science.


The Traditional Preclinical Pipeline: A System Plagued by Poor Human Relevance

For decades, preclinical evaluation has depended on a sequence of models that are poorly predictive of human outcomes. The process typically starts with **2D cell cultures**, where cells are grown on flat plastic surfaces. These models, while simple and inexpensive, are a stark oversimplification of human biology, lacking the three-dimensional structure and complex cellular interactions that govern organ function². The subsequent step involves animal models, which, despite being whole organisms, have significant genetic and metabolic differences from humans. These interspecies variations frequently lead to misleading

results regarding a drug's efficacy and toxicity, creating a "translational gap" that is a primary cause of clinical trial failures³.

The Emergence of Organ-on-a-Chip Systems as a Transformative Paradigm

In response to this crisis, OoC systems were developed to offer a more faithful representation of human biology in a laboratory setting⁴. These micro physiological systems are not just an incremental improvement; they are a fundamentally different approach. By populating micro-engineered devices with living human cells and recreating the dynamic physical and mechanical environment of a specific organ—such as the air-liquid interface and cyclic stretching of a lung—OoCs provide a high-fidelity window into human physiology and disease^{5,6}. This enables researchers to ask critical questions about a drug's safety and efficacy in a human-relevant context long before it reaches a patient, thereby de-risking the entire development process.

Fig 1: Representing Lung on a chip

Re-imagining Preclinical Science: The OoC Revolution

OoC systems are fundamentally reshaping the preclinical workflow. By generating human-relevant data at the earliest stages, they empower a "fail faster, cheaper" strategy, allowing scientific resources to be concentrated on compounds with the highest probability of clinical success.

Design and Fabrication: Engineering Physiological Microcosms

The central concept of an OoC is to engineer the smallest functional unit of an organ. This is accomplished by merging the fields of microfabrication and tissue engineering. Devices are commonly fabricated from biocompatible polymers like PDMS, which allows for the creation of intricate microfluidic channels that simulate blood flow and deliver nutrients to the cultured cells⁷. Within these devices, human cells, increasingly sourced from patient-derived induced pluripotent stem cells (iPSCs), are grown on porous membranes to establish critical tissue interfaces, such as the blood-brain barrier^{8,9}.

Applications in Efficacy and Safety Assessment

OoCs provide robust platforms for assessing drug efficacy and safety with high human relevance. "Disease-on-a-chip" models, such as a tumor microenvironment chip containing perfused microvessels, enable more accurate screening of oncology drugs compared to standard 2D cultures (10). In toxicology, a liver-on-a-chip can identify compounds likely to cause human-specific drug-induced liver injury (DILI), while a heart-on-

a-chip with beating cardiac cells can detect potential cardiotoxicity early in development^{11,12}.

Recreating Human Pathophysiology in a Dish

A key strength of OoCs is their ability to model complex human diseases. For instance, a blood-brain barrier-on-a-chip can be used to screen drugs for their ability to treat neurodegenerative disorders like Alzheimer's disease¹³. During the recent global pandemic, lung-on-a-chip models were rapidly deployed to study the mechanisms of SARS-CoV-2 infection and to test antiviral medications¹⁴. Furthermore, by using cells from a patient with a specific genetic disorder, researchers can build personalized disease models to investigate individual drug responses and advance precision medicine¹⁵.

The OoC Toolkit: A Deep Dive into Core Technologies

The power of OoC systems stems from a convergence of several key technologies. Core platform types include Single-Organ Chips, which offer a high-fidelity model of an individual organ for deep mechanistic investigation; Multi-Organ Systems, which connect different organ chips to study systemic effects and pharmacokinetics¹⁶; and Disease-Specific Models, which are engineered to replicate a particular pathology.

A critical enabling technology is the use of patient-derived iPSCs, which allows for the creation of personalized models. The incorporation of integrated sensors provides another layer of sophistication, enabling real-time, non-invasive monitoring of cellular health and function¹⁷. Finally, the application of AI and machine learning for high-content image analysis is becoming essential for extracting deep, quantitative insights from the complex biological events occurring within these advanced systems¹⁸.

Fig 2: Representing Multi Organ on a chip

Case Study Deep Dive: OoC in Action

Several pioneering organizations are already demonstrating the real-world impact of OoC technology. Emulate, Inc., a leader in the commercial space, has developed a suite of validated organ chips that are being used by numerous pharmaceutical companies to make better-informed decisions. Their Lung-Chip was famously used to model viral infection and identify potential therapeutics. CN Bio Innovations has focused on multi-organ systems, and its PhysioMimix™ Liver-on-a-Chip model marked a major regulatory milestone when it was included in an Investigational New Drug (IND) submission accepted by the FDA. The foundational research from the Wyss Institute at Harvard University

continues to drive innovation, having developed many of the core technologies that underpin the entire field^{5, 6}.

Navigating the Gauntlet: Critical Challenges and Strategic Imperatives

Despite its transformative potential, the path to widespread adoption of OoC technology is not without significant obstacles. A primary challenge is standardization and validation. The lack of consistent device formats, protocols, and quality control metrics makes it difficult to compare data across platforms and laboratories¹⁹. This hinders regulatory confidence and slows broader adoption. Another major hurdle is scalability and throughput. Many current OoC systems are low-throughput and require intensive manual operation, limiting their utility for large-scale screening campaigns.

Perhaps the most significant challenge lies in recapitulating full biological complexity. While powerful, current models often lack key physiological components, such as a fully integrated immune system or a dynamic microbiome¹⁹. Finally, regulatory acceptance remains the ultimate gatekeeper. While progress is being made, driven by legislation like the FDA Modernization Act 2.0²⁰, establishing clear guidelines for the use of OoC data in regulatory filings is a critical and ongoing process.

Market Landscape and Future Trajectory

The burgeoning field of Organ-on-a-Chip is not only a scientific revolution but also a rapidly growing economic sector. The global market is experiencing explosive growth, with projections suggesting a multi-billion dollar valuation within the next decade. This growth is fueled by the urgent need for more predictive preclinical models and a strong ethical and legislative push to reduce animal testing²¹.

The future trajectory of the field points toward greater integration and intelligence. The focus is shifting from single-organ models to interconnected "human-on-a-chip" platforms²². The convergence with AI and automation will be critical for managing the complexity and extracting the full value from the data generated. Ultimately, the most profound impact will arise from the synergy between OoC systems and patient-derived iPSCs, which will finally unlock the door to true precision medicine, enabling therapies to be tested for an individual before they are prescribed.

2.CONCLUSION

Organ-on-a-Chip technology represents a fundamental and necessary evolution in biomedical science. It provides a tangible solution to the crisis of translation that has long plagued drug development. By generating human-relevant data at the earliest stages of research, these systems have the potential to significantly de-risk the transition from the laboratory to the clinic.

However, the revolution is still maturing. Navigating the gauntlet of standardization, scalability, and regulation will require a concerted and collaborative effort. Based on the analysis within this review, the following recommendations are proposed:

For the Scientific and Research Community: Prioritize the development of standardized protocols and validation studies to build confidence in OoC-derived data. Foster deep, interdisciplinary

collaboration between biologists, engineers, and data scientists to build more complex and predictive models.

For the Pharmaceutical and Biotechnology Industry: Strategically integrate OoC models into early-stage decision-making processes. Invest in automated, higher-throughput systems to enable larger-scale screening and toxicology studies.

For Regulatory Bodies and Policymakers: Continue to engage proactively with industry and academic experts to establish clear frameworks for the validation and acceptance of OoC data in regulatory submissions.

In conclusion, the journey of Organ-on-a-Chip technology is one of immense potential tempered by practical hurdles. By strategically addressing the field's core challenges, this technology is poised to become an indispensable tool in the creation of safer, more effective, and more personalized medicines.

3.CONFLICT OF INTEREST

The authors declare that there are no conflicts of interest.

4. ACKNOWLEDGEMENT

The authors are thankful to the Management & Principal of Malla reddy College of Pharmacy, Hyderabad, T.S., India for providing necessary facilities and support to carry out this work.

5. REFERENCE

1. Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? *Acta Pharm Sin B*. 2022;12(7):3049-3062.
2. Duval K, Grover H, Han L, Mou Y, Pegoraro A, Fredberg C, et al. Modeling physiological events in 2D and 3D cell cultures. *Physiology (Bethesda)*. 2017;32(4):266-277.
3. Leenaars M, Hooijmans CR, van der Vaart L, Hesp A, de Vries R, Ritskes-Hoitinga M. The evidence-based preclinical trial: a plea for systematic reviews of animal studies. *Drug Discov Today*. 2012;17(19-20):1061-1067.
4. Bhatia SN, Ingber DE. Microfluidic organs-on-chips. *Nat Biotechnol*. 2014;32(8):760-772.
5. Huh D, Kim HJ, Fraser JP, Shea DE, Khan M, Temenoff JS, et al. A human breathing lung-on-a-chip. *Science*. 2010;328(5986):1662-1668.
6. Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences peristalsis-like motions and flow. *Lab Chip*. 2012;12(12):2165-2174.
7. Xia Y, Whitesides GM. Soft lithography. *Annu Rev Mater Sci*. 1998;28:153-184.
8. Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. *Trends Cell Biol*. 2011;21(12):745-754.
9. Rowe RG, Daley GQ. Induced pluripotent stem cells in disease modelling and drug discovery. *Nat Rev Genet*. 2019;20(7):377-388.

10. Shirure VS, Bi Y, Curtis MB, Le-Huy M, Lezia J, Goedegebuure MM, et al. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived xenografts. *Lab Chip*. 2018;18(23):3687-3702.
11. Beckwitt CH, Clark AM, Wheeler S, Taylor DL, Lauffenburger DA, Vernetti L. The liver-on-a-chip: a new approach to predict drug-induced liver injury in man. *In Vitro Cell Dev Biol Anim*. 2018;54(1):1-16.
12. Agarwal A, Goss JA, Cho A, McCain ML, Parker KK. Microfluidic heart on a chip for higher throughput pharmacological studies. *Lab Chip*. 2013;13(18):3599-3608.
13. Brown JA, Pensabene V, Markov DA, Allwardt V, Neely MD, Shi M, et al. Recreating blood-brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. *Biomicrofluidics*. 2015;9(5):054124.
14. Si L, Bai H, Rodas M, Wiskerchen M, Huyan T, Donahue C, et al. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. *Nat Biomed Eng*. 2021;5(8):815-829.
15. Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agarwal A, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. *Nat Med*. 2014;20(6):616-623.
16. Edington CD, Chen WLK, Geishecker E, Kassis T, Soenksen LR, Bhushan BM, et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. *Sci Rep*. 2018;8(1):4530.
17. Polini A, Prodanov L, Bhise NS, Manoharan V, Dokmeci MR, Khademhosseini A. Organs-on-a-chip with integrated sensors. *Mater Today (Kidlington)*. 2014;17(8):368-380.
18. Jalili-Firoozinezhad S, Gazzaniga FS, Calamari EL, Camacho DM, Fatanat-Didar T, Pensabene V, et al. A complex human gut-on-a-chip enables systematic screening of microbiome-based therapies. *Cell Syst*. 2019;9(4):367-384.e12.
19. Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA. Organs-on-chips: into the next decade. *Nat Rev Drug Discov*. 2021;20(5):345-361.
20. Wadman M. FDA modernization act 2.0 allows for alternatives to animal testing. *Science*. 2023;379(6627):14.
21. Vormann MK, Gijzen L, Hutter V, Nicolas J, Tagle DA, van den Eijnden-van Raaij J, et al. The 3Rs in a dish: replacing, reducing, and refining animal experiments in the development of human-relevant drug approaches. *Expert*
22. Skardal A, Shupe T, Atala A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. *Drug Discov Today*. 2016;21(9):1399-1411.